A Numerical Approach for Solving Quadratic Integral Equations of Urysohn’s Type using Radial Basis Function

نویسنده

  • Zakieh Avazzadeh
چکیده

Introduction Quadratic integral equations provide an important tool for modeling the numerous problems in engineering and science. These equations appear in the modeling of radiative transfer, kinetic theory of gases, traffic theory, neutron transport and in many other phenomena [2-7]. So, it is clear that solving this class of integral equations can be used to describe many events in the real world. Recently, many different types of research have been focusing on the effective properties of quadratic integral equations such as existence, uniqueness, monotonic solutions and positive solutions of this class of equations [8-13]. There are a few numerical and analytical methods to estimate the solution of the quadratic integral equations such as Picard and Adomian decomposition method (ADM) [14], and some other methods [15]. In this study, the radial basis functions method with the collocation scheme for solving quadratic integral equations of Urysohn’s type is described. The use of radial basis functions for solving the Fredholm integral equation was offered by Makroglou [1] and Alipanah and Dehghan [16] facilitated this method with the quadrature integration technique. Also, this method is compared with the method via orthogonal polynomials [17]. We utilize the method for solving the quadratic integral equations. A nonlinear Fredholm quadratic integral equation of Urysohn’s type can be considered as the following general form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions

In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.

In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...

متن کامل

Numerical ‎S‎olution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions‎

This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...

متن کامل

Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

‎In this paper‎, ‎indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations‎. ‎Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin‎. ‎To solve the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012